Chapter 4: MOTIN IN 2D AND 3D

- 1. If the x component of vector \vec{r} is 2.6 m and the y component is -2.3 m then \vec{r} in unitvector notation is:
- (A) 2.6 $\hat{i} 2.3 \hat{j}$
- (B) $-2.3 \hat{i} + 2.6 \hat{j}$ (C) $6.2 \hat{i} + 3.2 \hat{j}$
- (D) 3.2 $\hat{i} 6.2 \hat{j}$
- **2.** The displacement of a particle moving from $\vec{r_1} = 5\hat{i} 6\hat{j} + 2\hat{k}$ to $\vec{r}_2 = -2\hat{i} + 6\hat{j} + 2\hat{k}$ is
- $(A) -7\hat{i} + 12\hat{j}$
- (B) $3\hat{i} + 4\hat{k}$ (C) $7\hat{i} 12\hat{j}$ (D) $-3\hat{i} 4\hat{k}$
- **3.** A particle goes from $(x_1=-2m, y_1=3m, z_1=1m)$ to $(x_2=3m, y_2=-1m, z_2=4m)$. Its displacement is:
- (a) $\hat{i} + 2\hat{j} + 5\hat{k}$
- (b) $5\hat{i} 4\hat{j} + 3\hat{k}$ (c) $-5\hat{i} + 4\hat{j} 3\hat{k}$ (d) $-\hat{i} 2\hat{i} 5\hat{k}$
- **4.** The coordinates of a car's position as function of time is given by: $x = 5t^2 + 16$, and $y = -t^3$ +5, the magnitude of position vector \bar{r} at t=2s is:
- (a) 5 m
- (b) 1 m
- (c) 2.6 m
- (d) 4 m
- 5. The components of a car's velocity as a function of time are given by:
- $V_x = 2 t + 3$, and $V_y = 4 t 1$, its velocity \vec{V} at (t = 1 s) is:

- (A) $\vec{V} = 9\hat{i} + 11\hat{j}$ (B) $\vec{V} = 5\hat{i} + 3\hat{j}$ (C) $\vec{V} = 7\hat{i} + 7\hat{j}$ (D) $\vec{V} = 11\hat{i} + 15\hat{j}$
 - **6.** Velocity is defined as:
- (a) rate of change (b) position of position with
 - divided by time
- (c) a speeding up (d) change of or slowing down
 - position
- time 7. The position of a particle moving on an x axis is given by: $X = t^2 + 2$, its average velocity in the time interval from t=1s to t=2s is:
- (b) 2 m/s
- (c) 3 m/s
- (d) 1 m/s
- 8. A car travels east at 200 m/s and then travels west at 200 m/s, the change in its velocity is:
- (a) zero
- (b) 400 m/s east
- (c) 400 m/s west
- (d) 200 m/s west
- **9.** The position vector for a moving particle is: $\bar{r} = \hat{i} + 4t^2\hat{j} + t\hat{k}$, its velocity and acceleration as a function of time are:

- (b) $\overline{a} = 8\hat{j} + 8t\hat{j} + \hat{k}$ $(c) \in \overline{a} = 8t\hat{j}$ $\overline{a} = 8\hat{j} + \hat{k}$ $(c) \in \overline{a} = \hat{i} + 8\hat{j}$ $(d) = 8t^2\hat{j} + t\hat{k}$

10. A particle moves in the xy plane. In which situation of the following V_x and V_y are both constant

Situation	X(m)	Y(m)
Α	2 t ²	4 t + 3
В	4 t ³ – 2	+3
С	5 t	2 t + 1
D	- 3 t	t ² -1
(b) B	(c) C	(d) D

(a) A

11. The components of a car's velocity as a function of time are given by $v_x = 6 t^2 - 5$, $v_y = -5 t^2 - 5$ 3 t³ . The acceleration components are:

(A)
$$a_x = 10 \text{ t}$$

 $a_y = -12 \text{ t}^2$

(B)
$$a_x = 4 t$$

 $a_y = -6 t^2$

(C)
$$a_x = 6 t$$

 $a_y = -15 t^2$

(C)
$$a_x = 6 t$$

 $a_y = -15 t^2$
(D) $a_x = 12 t$
 $a_y = -9 t^2$

12. A particle moving with initial velocity $\vec{v}_0 = -2\hat{i} + 4\hat{j}$ m/s, and acceleration $\vec{a} = -5\hat{i} + 8\hat{j}$ m/s^2 , the x-component v_x of the final velocity at (t=1 s) is ?

(A) -7 m/s

13. Acceleration is defined as:

(a) rate of change (b) speed divided of position with time

by time

(c) rate of change of velocity with time

(d) change of velocity

14. A particle had a speed of 18 m/s in the +x direction and after 2.4 s its speed was 30 m/s in the -x direction. Its average acceleration during this time is:

(a)
$$a = \frac{-30 - 18}{2.4}$$
 (b) $a = \frac{30 - 18}{2.4}$ (c) $a = \frac{18 + 30}{2.4}$ (d) $a = \frac{18 - 30}{2.4}$

(b)
$$a = \frac{30-18}{2.4}$$

(c)
$$a = \frac{18+30}{2.4}$$

(d)
$$a = \frac{18-30}{2.4}$$

15. A particle moving with $\vec{v}_0 = 2\hat{i} + 5\hat{j}$ and acceleration $\vec{a} = 5\hat{j}$. Its velocity after 2s is:

(a) 15 m/s

(b) 12 m/s

(c) $\sqrt{29}$ m/s

(d)
$$\sqrt{43.2}$$
 m/s

16. A particle leaves the origin with initial velocity $\bar{v}_0 = 8\hat{i} + 12\hat{j}$ m/s and a constant acceleration $\bar{a} = 4\hat{i} - 2\hat{j}$ m/s². The particle's velocity at t = 6 s is:

(a) $\bar{v} = 24 \hat{i}$

 $\overline{v} = 32\hat{i} + 24\hat{j}$ (c) $\overline{v} = 32\hat{i}$

(d) $\bar{v} = 32\hat{i} - 12\hat{j}$

17. Acceleration is equal to

(a) $\frac{d\vec{v}}{dt}$

(b) $\frac{d\vec{r}}{dt}$ (c) $\frac{d\vec{v}}{dr}$

 $(\mathsf{d})\frac{\Delta \vec{r}}{\Delta t}$

	18. The range of 50 m/s is:	of a ball is thrown at	t an angle of 30° abo	ve the horizontal with an initial speed	
(A)	318.1 m	(B) 267.3 m	(C) 373.4 m	(D) 220.9 m	
	19. The maximu	ım range of a proje	ctile is at launch ang	le	
(A)	$\theta = 25^{\circ}$	(B) $\theta = 35^{\circ}$	$(C) \theta = 45^{\circ}$	(D) θ = 55°	
	20. In the projectile motion the acceleration in the horizontal direction is:				
(A) 19.6 m/s ²	(B) zero	(C) 9.8 m/s ²	(D) 4.9 m/s^2	
	21. The range of 50 m/s is:	of a ball is thrown at	t an angle of 30° abo	ve the horizontal with an initial speed	
(A)	318.1 m	(B) 267.3 m	(C) 373.4 m	(D) 220.9 m	
				ove the horizontal with initial speed ce before striking the ground?	
(a)	4.3 km	(b) 8.5 km	(c) 43 km	(d) 85 km	
	23. A stone thrown from the top of a tall building follows a path that is:				
(a)	circular	(b) parabolic	(c) hyperbolic	(d) a straight line	
	24. Two project other:	tiles are in flight at	the same time. The	e acceleration of one relative to the	
(a)	is always 9.8 m	/s ² (b) can be as	large as 19.8 m/s ²	(c) can be horizontal (d) is zero	
	25. A ball is thrown at V_0 and angle θ_0 above horizontal and returned to its initial path of the ball is called:			and returned to its initial height. The	
(a)	Range	(b) Trajectory	(c) Horizontal path	(d) Vertical path	
	26. In question	25, the horizontal c	omponent of the ball	's velocity V _{x0} is:	
(a)	V_{x0} = unchange	ed (b) $V_{x0} = ze$	ro (c) $V_{x0} = V_0$	(d) V_{x0} is changed	
(a)	27. In question $V_y = V_x$		height, the vertical (c) $V_y = zero$	component of the ball's velocity V_y is: (d) $V_y = V_{0y}$	
28. A ball is thrown with initial velocity v_0 =120 m/s at an angle θ_0 =60° above the the velocity v_0 in unit vector notation is:					
(a)		(b) $\overline{v}_0 = 60\hat{i} + 104\hat{j}$		(d) $\overline{v}_0 = 104\hat{j}$	
	29. In question	28, the acceleration	n in the horizontal dire	ection when t=5 s is:	
(a)	24 m/s ²	(b) -9.8 m/s^2	(c) zero	(d) 600 m/s ²	

	30. In question 2	In question 28, the maximum range of the ball is:		
(a)	1469.4 m	(b) 1272.5 m	(c) 1649.4 m	(d) 1722.5 m
	31. The horizon to	tal range is the horiz	contal distance the p	projectile has traveled when it returns
(a)	the origin	(b) its max. height	(c) its final height	(d) its initial height
	velocity vect	tors: (1) $\overline{v}_0 = 20\hat{i} + 70$	\hat{j} , (2) $\bar{v}_0 = -20\hat{i} + 70$	and, with one of the following initial \hat{j} , (3) $\overline{v}_0 = 20\hat{i} - 70\hat{j}$, (4) unch speed greatest first.
(a)	4 > 3 > 2 > 1	(b) 4 > 2 > 3 >1	(c) $1 > 2 > 3 > 4$	(d) all the same
	33. In the project	tile motion, the verti	cal velocity compon	ent v _y
٠,	changes ntinuously	(b) rema constant	ins (c) equals zero	(d) v_y equals v_x
	34. The maximu	m range of a project	tile is at launch angl	e
(a)	$\theta = 25^{\circ}$		(c) $\theta = 45^{\circ}$	
35. In the projectile motion the horizontal velocity component v_x remains constant because the acceleration in the horizontal direction is:				oonent v _x remains constant because
(a)	a _x > 0	(b) $a_x = g$	(c) a _x > g	(d) $a_x = 0$
	36. The range of a ball is thrown at an angle of 30° above the horizontal with an initial sp 50 m/s is:			
(a)	318.1 m	(b) 267.3 m	(c) 373.4 m	(d) 220.9 m
37. A ball is thrown at an angle of 30° above the horizontal with an intial speed 980 m/ball's range is:				ntal with an intial speed 980 m/s. The
(a)	4.3 km	(b) 8.5 km	(c) 43 km	(d) 85 km
38. In the projectile motion the horizontal velocity component v _x remains constant becathe acceleration in the horizontal direction is:				oonent v _x remains constant because
(a)	$a_x = 0$	(b) $a_x > 0$	(c) $a_x = g$	(d) $a_x > g$
		own at V ₀ and angle ball is called:	θ_0 above horizontal	and returned to its initial height. The
(a)	Range		(c) Horizontal path	(d) Vertical path
40. In question 39, the horizontal component of the ball's velocity V_{x0} is:			s velocity V _{x0} is:	
(a) und	$V_{x0} =$ changed	(b) $V_{x0} = zero$	(c) $V_{x0} = V_0$	(d) V_{x0} is changed

	41.	In question 3	39, at the maximum I	neight, the vertical co	omponent of the ball's velocity V_y is:
(a)	V _y	$= V_x$	(b) $V_y = V_0$	(c) $V_y = zero$	(d) $V_y = V_{0y}$
	42.	The period of 2 m is:	of an objects moving	at a constant speed	of 4 m/s on a circular path of radius
(A)	π _	<u>s</u>	(B) 2π s	(C) 4π s	(D) 8π s
	43.	The period of 2 m is:	of an objects moving	at a constant speed	of 4 m/s on a circular path of radius
(A)	π	S	(B) 2π s	(C) 4π s	(D) 8π s
	44.	•	oves at constant spe us acceleration vecto	•	. The instantaneous velocity and
	he	circular	(b) both perpendicular to the circular path	(c) perpendicular to each other	
	45.	For a biolog 25g, its spee		m radius centrifuge t	o have a centripetal acceleration of
(a)	11	m/s	(b) 16 m/s	(c) 50 m/s	(d) 122 m/s
	46.		ed to a 0.50-m string celeration at the top		nstant speed of 4m/s in a vertical
(a)	9.8	m/s ² , up	(b) 9.8 m/s ² , down	(c) 32 m/s ² , up	(d) 32 m/s ² , down
	47.		ed to a 0.50-m string celeration at the bott		nstant speed of 40m/s in a vertical
(a)	9.8	m/s², up	(b) 9.8 m/s ² , down	(c) 32 m/s ² , up	(d) 32 m/s ² , down
	48.	A car rounds	s a 20-m radius curve	e at 10m/s. The mag	nitude of its acceleration is:
(a)	zer	0	(b) 0.2 m/s^2	(c) 5 m/s^2	(d) 40 m/s^2
	49.		of a car moving in a color of 5 m/s ² is:	circular path of radius	s 20 m with a centripetal
(a)	10	m/s	(b) 100 m/s	(c) 4 m/s	(d) 2000 m/s
	50.		of a plane that enters aves the turn with \overline{v}_f		ar turn with $\overline{v}_i = 200\hat{i} + 600\hat{j}$ m/s and
(a)) 12		(b) 16	(c) 32	(d) 64

51. The period of an objects moving at a constant speed of 4 m/s on a circular path of radius 2 m is:

- (a) π s
- (b) 2π s
- (c) 4π s
- (d) 8π s

52. Referring to question 51, the acceleration of the object is:

- (a) 1 m/s²
- (b) 2 m/s²
- (c) 4 m/s²
- (d) 8 m/s^2

53. A particle is moving in circular path, at point P the particles velocity is: $\vec{v} = 3\hat{i} + 4\hat{j}$ at which point the velocity is $\vec{v} = -3\hat{i} - 4\hat{j}$

- (a) A
- (b) B
- (c) C
- (d) D

- 1. A
- 2. A
- 3. b
- 4. 36.12 m
- 5. B
- 6. a
- 7. c
- 8. c
- 9. a
- 10. c
- 11. D
- 12. A
- 13. c
- 14. a
- 15. a
- 16. c
- 17. a
- 18. D
- 19. C
- 20. B
- 21. D
- 22. d
- 23. b
- 24. d 25. b
- 26. a
- 27. c 28. b
- 29. c
- 30. a
- 31. d
- 32. d
- 33. a
- 34. c
- 35. d
- 36. d
- 37. d
- 38. a
- 39. b
- 40. a
- 41. c
- 42. A 43. A
- 44. c

- 45. b (taking the radius to be 1 m)
- 46. d
- 47. c
- 48. c
- 49. a
- 50. c
- 51. a
- 52. d
- 53. b